

Forest Susceptibility to Southern Pine Beetle in the New Jersey Pinelands

Carissa F. Aoki Dartmouth College • Ecology and Evolutionary Biology

Outline

- I. SPB Background
- II. Forest structure and susceptibility
- III. Data Methods
- IV. Pinelands, North and South
- V. Infested vs. uninfested stands
- VI. SPB in wetland stands

Southern Pine Beetle

Dendroctonus frontalis Zimmerman (Coleoptera: Curculionidae)

Southern Pine Beetle

Dendroctonus frontalis Zimmerman (Coleoptera: Curculionidae)

- A native insect pest historically occurring across the southern states
- Last recorded occurrence in New Jersey in the 1930s
- Current New Jersey outbreak began ~2002
- Few outbreaks in the south since the late 90s

A Story About A Beetle An excerpt from a video by Milo Johnson

- Weakened tree enables beetles to get established
- SPB pheromones + pine tree volatiles = more beetles
- Mass attack strategy enables beetles to eventually overcome healthy trees
- Infestations occur in discrete "spots"
- Multiple generations during a summer enable spots to grow
- An "outbreaking" pest

Southern Pine Beetle Community

Southern Pine Beetle in New Jersey

Southern Pine Beetle in New Jersey

Adapted by Matt Ayres from Weed et al. 2013; data from NOAA National Climate Data Center

Southern Pine Beetle in New Jersey

Adapted by Matt Ayres from Weed et al. 2013; data from NOAA National Climate Data Center

The Polar Vortex in New Jersey

Overnight minimum temperatures January 4-5, 2014

Image courtesy of David Robinson New Jersey State Climatologist

The Polar Vortex in New Jersey

Southern Pine Beetle on Long Island!

Google earth

Connetquot State Park Fire Island National Seashore

Wertheim National Wildlife Refuge

Data SIO, NOAA, U.S. Navy, NGA, GEBCO Image Landsat

Imagery Date: 4/9/2013 lat 40.813528° lon -72.844235° elev 33 ft eye alt 109.86 mi 🔘

Outline

I. SPB Background

- **II.** Forest structure and susceptibility
- III. Data Methods
- IV. Pinelands, North and South
- V. Infested vs. uninfested stands
- VI. SPB in wetland stands

Why do stand characteristics matter?

I. Beetle ability to overcome defenses (resin flow data)

II. Host searching behavior:

Stand density (basal area, nearest neighbor distance), %Pine within stand

III. Host quality (for reproductive success) Age/DBH, height, radial growth

IV. Pheromone plume maintenance

Canopy closure, canopy base height, understory structure, stand density/basal area

- Different pines species have different susceptibility due to resin flow differences
- Stands with higher density have higher rates of spot initiation and growth
- Thinning is an effective strategy for SPB prevention (recommendation is to thin stands >27.5 m2/ha to <18.3 m2/ha)
- Susceptibility has a parabolic relationship with stand age

Outline

- I. SPB Background
- II. Forest structure and susceptibility
- **III. Data Methods**
- IV. Pinelands, North and South
- V. Infested vs. uninfested stands
- VI. SPB in wetland stands

Control Plots

Control Plots

"Spot" plots

Spot Suppression

Figure 10-2 - Application of cut-and-leave requires felling those trees that contain SPB broods, plus a buffer strip of uninfested trees.

Figure 10-3 - Procedure for controlling southern pine beetle infestations by means of cut-and-leave.

Thatcher et al., eds. 1980. The Southern Pine Beetle.

Spot plots measured adjacent to suppressed area

Plot Samples

Selected nearest tree to each of 5 equidistant sampling points

Focal tree sampling 5 samples/50 m transect; 3 transects/plot:

- Hemispherical photo (transect 1 only)
- Age of focal tree
- Focal tree DBH
- Focal tree BA pine
- Focal tree BA hardwood
- Focal tree height
- Focal tree crown base
- Focal tree crown class
- Distance FT to nearest neighbor
- NN DBH and NN BA pine and BA hw
- Distance FT to 2nd nearest neighbor
- SNN DBH and SNN BA pine and BA hw

Why do stand characteristics matter?

I. Beetle ability to overcome defenses (resin flow data)

II. Host searching behavior:

Stand density (basal area, nearest neighbor distance), %Pine within stand

III. Host quality (for reproductive success) Age/DBH, height, radial growth

IV. Pheromone plume maintenance

Canopy closure, canopy base height, understory structure, stand density/basal area

Outline

- I. SPB Background
- II. Forest structure and susceptibility
- III. Data Methods
- IV. Pinelands, North and South
- V. Infested vs. uninfested stands
- VI. SPB in wetland stands

North vs. South: Basal Area

North vs. South: Height, DBH, tree distance

North vs. South: Height, DBH, tree distance

North vs. South: Tree age

Site quality?

Outline

- I. SPB Background
- II. Forest structure and susceptibility
- III. Data Methods
- IV. Pinelands, North and South
- V. Infested vs. uninfested stands
- VI. SPB in wetland stands

Basal area (pine and total)

Distance between trees

Tree age and diameter

0-

Infested

Status

Uninfested

Outline

- I. SPB Background
- II. Forest structure and susceptibility
- III. Data Methods
- IV. Pinelands, North and South
- V. Infested vs. uninfested stands
- VI. SPB in wetland stands

A Southern Pine Beetle Mystery in NJ

SPB Spots from Flight Data, August 2013

Tree defenses?

The Growth Differentiation Balance Hypothesis (Loomis 1932, Lorio and Sommers 1986)

Herms and Mattson 1992

Tree defenses?

Next steps

- Risk model
- Landscape-scale simulation models (management, fire, climate scenarios)
- Post-beetle fuels modeling: Ken Clark

Related project: southwide data

- Annual monitoring of SPB and its predator (*T. dubius,* checkered beetle)
- Began in 1987
- By 2005, at least 7 years of data for 133 forests over 13 states from Texas to Virginia
- Up to 24 years of continuous data per forest
- Basis for prediction system (spring trapping for summer outbreak prediction)

Related project: southwide data

- Can predictions be improved?
- Can predictive models include economic and other nonmarket values to help managers make good choices?
- Bayesian framework

Related project: southwide data

QUESTIONS?

Acknowledgments

New Jersey Forest Service:

Lynn Fleming Ron Corcory James Dunn Bill Zipse Dave Finley Marie Cook

US Forest Service: Ken Clark Mike Gallagher Bill Oldland

Rutgers Pinelands Field Station: John Dighton

Field Crew 2013 & 2014:

Jacob Ebersole, Jen Freise, Sarah Heyborne, Jeff Ledolter, Becca Novello, Alex Procton

Matt Ayres and lab members: Lauren Culler Flora Krivak-Tetley Nina Lany Jeff Lombardo Aaron Weed

Funders: USFS EM Base and Fire Programs Garden Club of America NSF GRFP

